
Iteratively Learning Embeddings and Rules for Knowledge
Graph Reasoning

Wen Zhang
College of Computer Science,

Zhejiang University
wenzhang2015@zju.edu.cn

Bibek Paudel∗
Stanford University

& University of Zürich
paudel@ifi.uzh.ch

Liang Wang
College of Computer Science,

Zhejiang University
21621254@zju.edu.cn

Jiaoyan Chen
Department of Computer Science,

University of Oxford
jiaoyan.chen@cs.ox.ac.uk

Hai Zhu
Alibaba Group

China
marvin.zh@alibaba-inc.com

Wei Zhang
Alibaba Group & AZFT Joint Lab for

Knowledge Engine
lantu.zw@alibaba-inc.com

Abraham Bernstein
Department of Informatics,

University of Zürich
Switzerland

bernstein@ifi.uzh.ch

Huajun Chen†
Zhejiang University & AZFT Joint

Lab for Knowledge Engine
China

huajunsir@zju.edu.cn

ABSTRACT
Reasoning is essential for the development of large knowledge
graphs, especially for completion, which aims to infer new triples
based on existing ones. Both rules and embeddings can be used for
knowledge graph reasoning and they have their own advantages
and difficulties. Rule-based reasoning is accurate and explainable
but rule learning with searching over the graph always suffers from
efficiency due to huge search space. Embedding-based reasoning is
more scalable and efficient as the reasoning is conducted via com-
putation between embeddings, but it has difficulty learning good
representations for sparse entities because a good embedding relies
heavily on data richness. Based on this observation, in this paper
we explore how embedding and rule learning can be combined
together and complement each other’s difficulties with their ad-
vantages. We propose a novel framework IterE iteratively learning
embeddings and rules, in which rules are learned from embeddings
with proper pruning strategy and embeddings are learned from
existing triples and new triples inferred by rules. Evaluations on
embedding qualities of IterE show that rules help improve the qual-
ity of sparse entity embeddings and their link prediction results.
We also evaluate the efficiency of rule learning and quality of rules
from IterE compared with AMIE+, showing that IterE is capable of
generating high quality rules more efficiently. Experiments show
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that iteratively learning embeddings and rules benefit each other
during learning and prediction.
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1 INTRODUCTION
ManyKnowledgeGraphs (KGs), such as Freebase [2] and YAGO [33],
have been built in recent years and led to a broad range of appli-
cations, including question answering [4], relation extraction [36],
and recommender system [49]. KGs store facts as triples in the form
of (subject entity, relation, object entity), abridged as (s, r ,o). Some
KGs also have an ontology with class and property expression ax-
ioms which place constraints on classes and types of relationships.

Knowledge graph reasoning (KGR) can infer new knowledge
based on existing ones and check knowledge consistency. It is
attracting research interest and is important for completing and
cleaning up KGs. Two of the most common learning methods for
KGR are embedding-based reasoning and rule-based reasoning [26].

One of the crucial tasks for embedding-based and rule-based
reasoning is to learn embeddings and rules respectively. Embedding
learning methods such as TransE [3], HolE [27] and ComplEx [35]
learn latent representations of entities and relations in continuous
vector spaces, called embeddings, so as to preserve the information
and semantics in KGs. Embedding-based reasoning is more efficient
when there are a large number of relations or triples to reason over.
Rule learning methods such as AMIE[10] aim to learn deductive and
interpretable inference rules. Rule-based reasoning is precise and
can provide insights for inference results.
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With different advantages, both embedding and rule learning
are important for KGR, while they still have their own difficulties
and weaknesses.

Sparsity Problem for Embedding Learning.One of the main
difficulties for embedding learning is the poor capability of encoding
sparse entities. For example, Figure 1 shows correlation between
entity frequency and entity link prediction results measured in
mean reciprocal rank (MRR), where higher values means better
results. In Figure 1, the blue line shows there are a large portion of
entities having only a few triples, revealing the common existence
of sparse entity. The yellow line shows that the prediction results
of entities are highly related to their frequency, and the results of
sparse entities are much worse than those of frequent ones.
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Figure 1: The numbers and mean reciprocal rank of different fre-
quency entities based on ANALOGY results on FB15k-237.

Efficiency Problem for Rule Learning. The main difficulty
in rule learning is the huge search space when determining rule
structures and searching for support triples. For example, with
a small KG containing 10 relations and 100 entities, the number
of possible structures for a rule with 3 relations is 103 and the
maximum number of supports for these rules is 1002∗3 ∗ 103 = 1015.
Since the search space is exponential to the number of relations, it
will be much larger for real KGs than this example.

With different advantages and difficulties, we argue that em-
bedding learning and rule learning can benefit and complement
each other. On the one hand, deductive rules can infer additional
triples for sparse entities and help embedding learning methods en-
code them better. On the other hand, embeddings encoded with rich
semantics can turn rule learning from discrete graph search into vec-
tor space calculation, so that reduce the search space significantly.
Thus we raise the research question: whether it is possible to
learn embeddings and rules at the same time andmake their
advantages complement to each other’s difficulties.

In this paper, we propose a novel framework IterE that iter-
atively learns embeddings and rules, which can combine many
embedding methods and different kinds of rules. Especially, we
consider linear map assumption (Section 2.1) for embedding learn-
ing because it is inherently friendly for rule learning as there are
special rule conclusions for relation embeddings in rules (Table 2).
We also consider a particular collection of object property axioms
defined in OWL2 (Table 1) for rule learning considering that se-
mantics included in web ontology language are important for the
development of knowledge graph.

IterE mainly includes three parts: (1) embedding learning, (2) ax-
iom induction, and (3) axiom injection. Embedding learning learns
embeddings for entities and relations, with input including triples
existing in KG and those inferred by rules. Axiom induction first

generates a pool of possible axioms with an effective pruning strat-
egy proposed in this paper and then assigns a score to each axiom
in the pool based on calculation between relation embeddings ac-
cording to rule conclusions from linear map assumption. Axiom
injection utilizes axioms’ deductive capability to infer new triples
about sparse entities according to axiom groundings and injects
these new triples into KG to improve sparse entity embeddings.
These three parts are conducted iteratively during training.

We evaluate IterE from three perspectives, 1) whether axiom im-
proves sparse embeddings’ quality and their predictions, 2) whether
embedding helps improve rule learning efficiency and quality, and 3)
how iterative training improves both embedding and rule learning
during training. The experiment results show that IterE achieves
both better link prediction performance and high quality rule learn-
ing results. These support our goal of making IterE complement
the strengths of embedding and rule learning.

Contributions of our work are as follows:

• We propose an iterative framework that combines embed-
ding learning and rule learning to explore themutual benefits
between them. Experiments show that it leads to better link
prediction results using rules and embeddings together.
• We present a new method for embedding learning with rules
based on axiom injection through t-norm based fuzzy log-
ics. Experiments show that IterE can significantly improve
embedding quality for the sparse part of a knowledge graph.
• We further identify a portfolio of ontology axioms for rule
learning with embedding based on linear map assumption.
Experiments show that IterE learns more high quality rules
more efficiently than conventional rule learning systems.

2 PRELIMINARIES
2.1 Knowledge graph embedding
A KG K = {E,R,T } contains a set of entities E, a set of rela-
tions R and a set of triples T = {(s, r ,o) |s,o ∈ E; r ∈ R}. In a
triple (s, r ,o), the symbols s, r , and o denote subject entity, rela-
tion, and object entity respectively. An example of such triple is
(Tokyo, locatedIn, Japan).

Knowledge graph embedding (KGE) aims to embed all entities
and relations in a continuous vector space, usually as vectors or
matrices called embeddinдs . Embeddings can be used to estimate the
likelihood of a triple to be true via a score function f : E×R×E →
R. Concrete score functions are defined based on different vector
space assumptions. We now describe two vector space assumptions
commonly used in KGEs and their corresponding score functions.

(a) Translation-based assumption embeds entities and relations
as vectors and assumes vs + vr = vo , in which vs , vr and vo are
vector embeddings for s, r and o respectively. For a true triple, the
relation-specific translation of subject embedding (vs + vr) is close
to the object embedding vo in embeddings’ vector space.

(b) Linear map assumption embeds entities as vectors and rela-
tions as matrices. It assumes that the subject entity embedding vs
can be linearly mapped to object entity embedding vo via relation
embedding Mr . In this case, for a true triple, the linear mapping of
the subject embedding by the relation matrix (vsMr) is close to the
object embedding vo in embeddings’ vector space.



Table 1: Conditions for object property expression axioms inOWL2 and translated rule formulation. OP refers to "ObjectProperty". OPE, with orwithout subscript,
denotes Object Property Expression and x, y, z are entity variables. △I is a nonempty set called object domain. ·OP is an object property interpretation function.
When translating axioms into rule forms according to condition, we replace OPE in axioms with binary relation r in the context of knowledge graph and the
number of OPE in EquivalentOP and the OPChain in SubOP is set to 2.

Object Property Axiom Condition Rule Form
ReflexiveOP(OPE) ∀x : x ∈ △I implies (x,x) ∈ (OPE)OP (x, r, x ) 1

SymmetricOP(OPE) ∀x, y : (x, y) ∈ (OPE)OP implies (y, x) ∈ (OPE)OP (y, r, x ) ← (x, r, y )
TransitiveOP(OPE) ∀x, y, z : (x, y) ∈ (OPE)OP and (y, z) ∈ (OPE)OP imply (x, z) ∈ (OPE)OP (x, r, z ) ← (x, r, y ), (y, r, z )
EquivalentOP(OPE1 ... OPEn ) (OPEj )

OP = (OPEk )
OP for each 1 ≤ j ≤ n and each 1 ≤ k ≤ n (x, r2, y ) ← (x, r1, y )

SubOP(OPE1 OPE2 ) (OPE1 )
OP ⊆ (OPE2 )

OP (x, r2, y ) ← (x, r1, y )
InverseOP(OPE1 OPE2 ) (OPE1 )

OP = {(x, y) |(y, x) ∈ (OPE2 )
OP } (x, r1, y ) ← (y, r2, x )

SubOP(OPChain(OPE1 ... OPEn ) OPE)
∀y0, ..., yn : (y0, y1 ) ∈ (OPE)OP and ... and (yn−1, yn ) ∈ (OPEn )

OP
(y0, r, y2 ) ← (y0, r1, y1 ), (y1, r2, y2 )imply (y0, yn ) ∈ (OPE)OP

Thus the score function ϕ of two assumptions can be written as:

ϕtranslation = sim(vs + vr , vo )
ϕl inearmap = sim(vsMr , vo ) (1)

where sim(x, y) calculates the similarity between vector x and y.
From the assumption point of view, vsMr = vo (or vs + vr = vo)

should exactly hold for true triples in the linear-map assumption
(or translation-based assumption). From the modeling point of view,
this is the optimization goal during learning, namely to be as close
as possible to the equation in assumption. The learning process
is done through either maximizing the objective or minimizing
the error induced from assumptions given by their respective loss
functions. Hence, the assumption equation usually does not exactly
hold with learned embeddings, but their loss functions are designed
to approach the assumption as much as possible.

In this paper, we adopt linear map assumption for embedding
learning because many reasonable rule conclusions can be derived
with relation embeddings based on this assumption (Table 2).
2.2 Rules Learning
Suppose X is a countable set of variables and C a countable set
of constants. A rule is of the form head ← body, where head is
an atom over R ∪ X ∪C and body is a conjunction of positive or
negative atoms over R ∪ X ∪C . An example of such rule can be:

(X,hasMother ,Y) ← (X,hasParent ,Y), (Y,дender , Female) (2)

When replacing all variables in a rule with concrete entities in
KG, we get a дroundinд of the rule. For example, one grounding of
Rule (2) can be:

(Bob,hasMother ,Ann) ← (3)
(Bob,hasParent ,Ann), (Ann,дender , Female)

A grounding with all triples existing in knowledge graph is a
support of this rule. For examples, if (Bob,hasMother ,Ann) ∈ K ,
(Bob,hasParent ,Ann) ∈ K and (Ann,дender , Female) ∈ K , then
grounding (3) is a support for rule (2).

The results of rule learning is of the following form:
α head ← body

in which α ∈ [0, 1] is a confidence score assigned to the rule by
the learning method.

Incorporating logical rules into other learning system such as
embedding learning is called rule injection. One way for rule injec-
tion is adding regularizer or other constraints to entity and relation
representations by propositionalizing the rules. Another way is
adding constraints to the constituent relations’ representation in
rules without direct effect on entity representations. As we want

to get new information of sparse entities through rules, we chose
propositionalization in this paper for rule injection.
2.3 OWL 2 Web Ontology Language Axioms
In this paper, instead of learning general Horn rules or closed-path
rules as previous works[9][48], we are more interested in ontol-
ogy axioms, the main components of knowledge graph ontologies,
because they are important for enriching semantics in KGs.

OWL2 Web Ontology Language, informally OWL22, is an on-
tology language for Semantic Web with formally defined meaning
and is a W3C recommendation. It defines multiple types of axioms,
from which we select some of them as a guidance of rule structures.
The selection is based on following principles: (i) the axioms are
related with binary relations, the main components of rules in KG
and (ii) they can infer new triples because rules are used to help
add new information about sparse entities in this paper. Thus, we
focus on object property expression axioms in OWL2 which are
composed of binary relations in the context of KG. Finally, 7 types
of object property expression axioms out of 14 are selected. The
unselected axioms are mainly applied to help check the consistency
in knowledge graph.

In OWL2, each axiom has its own condition revealing its seman-
tics. The axiom is satisfied if its condition hold. We introduce the
selected 7 types of object property expression axioms and their
conditions in Table 1. We also translate the conditions of axioms
into rule-form including a head and a body as introduced in the
previous subsection. The translated rule forms are used to guide
the structures of rules to be learned in this paper.

3 METHOD
Given a knowledge graph K = {E,R,T }, our goal is to learn em-
beddings and rules at the same time and make their advantages
complement each other’s difficulties. As discussed in Section 1, em-
bedding learning methods suffer from the problem of data sparsity
and rule learning methods have a very large search space.

In this paper, we propose a general framework IterE which
learns embeddings and rules in an iterative manner and can be
applied to many KGEs that are based on linear map assumption. It
includes three main parts:(i) embedding learning, (ii) axiom induc-
tion and (iii) axiom injection. Figure 2 shows the key idea of IterE
with these three iterative parts.
• Embedding learning learns entity embeddings E and rela-

tion embeddings R with a loss function Lembeddinд to be mini-
mized, calculated with input triples (s, r ,o), each with a label related

1the translated rule form of ReflexiveOP(OPE) only contain a head.
2https://www.w3.org/TR/owl2-primer/



Table 2: Seven types of object property expression axioms selected from OWL2 ontology language. OP is the short for ObjectProperty. K
denotes a KG and x, y, z are entity variables. v and M denote entity and relation embeddings respectively. I is identity matrix.

Object Property Axioms Rule Form According to Linear Map Assumption Rule Conclusion
ReflexiveOP(r ) (x, r, x ) vxMr = vx Mr = I
SymmetricOP(r ) (y, r, x ) ← (x, r, y ) vyMr = vx ; vxMr = vy MrMr = I
TransitiveOP(r ) (x, r, z ) ← (x, r, y ), (y, r, z ) vxMr = vz ; vxMr = vy, vyMr = vz, MrMr = Mr

EquivalentOP(r1, r2) (x, r2, y ) ← (x, r1, y ) vxMr2 = vy, vxMr1 = v y Mr1 = Mr2
subOP(r1, r2) (x, r2, y ) ← (x, r1, y ) vxMr2 = vy, vxMr1 = vy Mr1 = Mr2

inverseOP(r1, r2) (x, r1, y ) ← (y, r2, x ) vxMr1 = vy, vyMr2 = vx Mr1Mr2 = I
subOP(OPChain(r1, r2), r ) (y0, r, y2) ← (y0, r1, y1), (y1, r2, y2) vy0Mr = vy2, vy0Mr1 = vy1, vy1Mr2 = vy2 Mr1Mr2 = Mr

Figure 2: Overview of our IterE.

with its truth value. The inputs are of two types: triples existing
in K and triples that do not exist in K but are inferred by axioms.
• Axiom Induction inducts a set of axiomsA based on relation

embeddings R from the embedding learning step, and assigns each
axiom with a score saxiom .
• Axiom Injection injects new triples about sparse entities in

K to help improve their poor embeddings caused by insufficient
training. The new triples are inferred from groundings of quality
axioms with high scores in A from axiom induction. After axiom
injection, with K updated, the process goes back to embedding
learning again.

IterE is proposed based on the observation that embeddings
learned with linear map assumption can fully support the axiom
selected in this paper, while other assumptions such as translation-
based assumption can’t as pointed out in [50]. Inherently, for each
type of axioms, a meaningful conclusion can be drawn with relation
embeddings according to linear map assumption. For example, con-
sidering axiom inverse(hasParent ,hasChild ), if (Mike,hasParent ,
John) exists in knowledge graph, according to the condition and
rule form of inverse axiom in Table 1, another triple (John,hasChild,
Mike ) can be inferred. Suppose embeddings ofMike , John,hasParent
and hasChild are vMike , vJohn , MhasChild and MhasParent re-
spectively. According to the linear assumption for individual triples,
we can get following two equations: vMikeMhasParent = vJohn
and vJohnMhasChild = vMike . With these two equations, another
equation can be deduced: MhasParentMhasChild = I. Note that
this conclusion equation is only related with two corresponding
relation embeddings and is unrelated with concrete entities, thus it
can be regarded as a general conclusion for axiom inverse(hasParent ,
hasChild ). For other types of axioms, a general conclusion can be
drawn in the same way. We list details of the conclusion for each
type of axioms in Table 2. These conclusions about relation embed-
dings help guide axiom induction in this paper.
3.1 Embedding Learning
The input I of embedding learning is a set of triples with labels.
Unlike previous KGEs, which only learn embeddings but not rules,

positive input triple in IterE contains two parts: triples (s, r ,o) ∈ T
existing in original knowledge graph and triples (s, r ,o) ∈ Taxiom ,
where Taxiom is a set of triples inferred by axioms learned from
embeddings. Negative input triples (s ′, r ′,o′) ∈ Tneдative are gen-
erated by randomly replacing s or o with e ∈ E or replacing r with
r ′ ∈ R for (s, r ,o) ∈ T . Thus the input set I in IterE is as follows:
I = {((s, r ,o), lsro ) |((s, r ,o)) ∈ T ∧ Taxiom ∧ Tneдative } (4)

where lsro is the label for triple (s, r ,o) to evaluate its truth value.
lsro = 1 for (s, r ,o) ∈ T and lsro = 0 for (s, r ,o) ∈ Tneдative . For
triples (s, r ,o) ∈ Taxiom we assign lsro = π (s, r ,o), where π (s, r ,o)
is triple truth value predicted by axiom injection (Section 3.3).

With input I, the loss function of embedding learning is calcu-
lated by mean of cross entropy loss among all n input triples and
the training goal is to minimize the following loss function:

min Lembeddinд =
1
n

∑
((s,r,o),lsro )∈I

[−lsro log(ϕ (s, r ,o))

− (1 − lsro )log(1 − ϕ (s, r ,o))] (5)

As we adopt linear map assumption, the score function ϕ (s, r ,o)
for each triple (s, r ,o) is defined as:

ϕ (s, r ,o) = sim(vsMr , vo ) = σ (v⊤s Mr vo ) (6)

in which vs ∈ R1×d , vo ∈ R1×d are vector embeddings for subject
and object entity.Mr ∈ R

d×d is matrix embedding for relation and
σ denotes the sigmoid function. d is the embedding dimension. The
similarity between two vectors is evaluated via dot product.

Our approach can be combined with many KGEs based on linear
map assumption, such as DistMult[47] and ANALOGY[23]. In this
paper, we adopt ANALOGY as it achieves state-of-the-art results on
link prediction. ANALOGY is proposed to deal with an important
kind of reasoning, analogy reasoning, in embedding learning. It
imposes analogical structures among embeddings and requires
linear maps associated with relations to form a commuting family
of normal matrices. Specifically, the relation matrix embeddings are
constrained as block-diagonal matrices with each diagonal block is
either a real scalar, or a 2-dimensional real matrix in the form of[
a −b
b a

]
, where both a and b are real scalars.

After embedding learning, a collection of entity embeddings E
and relation embeddings R are learned and R will be used in axiom
induction.
3.2 Axiom Induction
Given relation embedding R, axiom induction aims to induce a set
of axioms A and assign a confidence score to each axiom in A.
To achieve this, IterE firstly generates a pool of possible axioms P
with an effective pruning strategy. Then it predicts a score of each
axiom a ∈ P based on calculation with R.



Figure 3: Detailed example for the process of IterE.

3.2.1 Axiom pool generation. Before calculating axiom scores with
relation embedding R, relation variables r , r1, r2, and r3 in Table 2
should be replaced with concrete relations. Axiom pool generation
generates a pool of possible axioms P by searching for possible
axioms with the number of support greater than 1.

One intuitive way of searching for possible axioms is generating
axioms by replacing all relation variable in each type of axioms with
each relation and then check the number of support for them, but
this suffers from a huge search space. Another way is to generate
axioms via random walk on knowledge graph while this method
can’t ensure coverage of axioms. Therefore axiom pool generation
is not an easy task because it has to achieve a good balance between
search space and coverage of highly possible axioms.

In this paper, we propose a pruning strategy combining travers-
ing and random selection. There are two steps for generating possi-
ble axioms for each relation r ∈ R in IterE.
• step 1: generate axioms or partial axioms: ReflexiveOP(r ),

SymmetricOP(r ), TransitiveOP(r ), EquivalentOP(r ′, r ), subOP(r ′, r ),
inverseOP(r ′, r ) and subOP(OPChain(r ′, r ′′), r ), , in which {r ′, r ′′}
are relation variables to be replaced with relations in KG and r par-
ticipants in the head of their rule forms.
• step 2: complete partial axioms via randomly selecting k triples

(e ′, r , e ′′) ∈ T related with r . Replacing r ′ or r ′′ in partial axioms
with relations that directly link to e ′ or e ′′.
• step 3: search for support of each axiom, and add those axioms

with number of support larger than 1 into axiom pool P.
The key point of whole process is choosing k , which is not trivial
because a large k will lead to dramatic increase of search space
while a small k will decrease coverage of axioms immediately. Thus
a good choice of k should achieve followings: 1) the probability
for P covering all highly possible axioms higher than t , named
including probability. 2) k is as small as possible. We defined the
highly possible axioms as axioms with existing probability larger
than p in this paper and we name p as minimum axiom probability.

We estimate the probability p (r ,ax ) that r replaces the relation
variable in head of axiom ax as:

p (r ,ax ) =
n

N
(7)

whereN is the number of triples (e ′, r , e ′′) ∈ T andn is the number
of support for axiom ax in K . Thus choosing k triples to satisfy
two requirements mentioned above can be formulated as follows:

min k s .t . 1 −
Ck
(1−p )N

CkN

> t (8)

From above inequality in (8), following inequality can be reached:

k > N − N (1 − t )
1
pN (9)

Thus with fixed p, t , the best choice of k should be the upper bound
vu of equation f (N ) = N − N (1 − t )

1
pN . Fortunately, with N ∈

[0, 1015], this equation is monotone increasing and has small upper
bound vu . For example, when p = 0.5, t = 0.95, vu is 6.

As the input of axiom pool generation is a fixed K during learn-
ing, axiom pool P only need to be generated once.
3.2.2 Axiom Predicting. Given current relation embedding R and
axiom pool P, axiom predicting predicts a score sa for each axiom
a ∈ P based on the rule conclusion for each type of axioms (column
4 in Table 2), in the form that Ma

1 = Ma
2 , where M

a
1 and Ma

2 are
matrices either from a single matrix or a product of two matrices.
As rule conclusions are derived from ideal linear map assumption,
Ma

1 andMa
1 usually are not equal but similar during training. Thus,

instead of matching Ma
1 and Ma

2 , we estimate the truth of axiom a
by similarity between Ma

1 and Ma
2 which is supposed to be related

with Frobenius norm of their difference matrix:
sa (F ) = ∥Ma

1 −M
a
2 ∥F (10)

sa (F ) is then normalized as follows because the value of sa (F ) for
different type of axioms vary dramatically:

sa =
smax (t ) − sa (F )

smax (t ) − smin (t )
(11)



in which t is the type of axiom that a belongs to. smax (t ) and
smin (t ) is themaximum andminimumFrobenius norm score among
all type t axioms in P. sa ∈ [0, 1] is the final score for axiom a and
the higher sa is the more confident that axiom a is.
3.3 Axiom Injection
Given knowledge graph K and possible axiom set A, axiom injec-
tion utilizes axiom’ deductive capability to infer a set of new triples
Taxiom for sparse entities and predict their labels. Taxiom will be
injected into embedding learning to reduce the sparsity of entities.
3.3.1 Sparse entities. We evaluate the sparsity of entities as follows:

sparsity (e ) = 1 − f req(e ) − f reqmin

f reqmax − f reqmin
(12)

where f req(e ) is the frequency of entity e participating in a triple,
as subject or object entity. f reqmin and f reqmax are the minimum
and maximum frequency among all entities. sparsity (e ) ∈ [0, 1].
sparsity (e ) = 1 means e is the most sparse entity and sparsity (e ) =
0 means the most frequent one. With sparsity (e ) > θsparsity , we
regard entity e as a sparse entity, where θsparsity is a sparse thresh-
old. We use Esparse to denote the set of sparse entity in K .

During axiom injection, triples related with sparse entities are in-
jected into the input of embedding learning. In other words, in new
inferred triples (sa , ra ,oa ), either sa ∈ Esparse or oa ∈ Esparse or
{sa ,oa } ∈ Esparse . Thus after inferring all possible new triples, we
filter those unrelated to sparse entities.
3.3.2 Predicting new triples and their labels. We utilize groundings
to infer new triples, and the grounding for axioms considered in
this paper can be generalized as the following form:

(sa , ra ,oa ) ← (s1, r1,o1), (s2, r2,o2), ..., (sn , rn ,on ) (13)
where the right side triples (sk , rk ,ok ) ∈ T with k ∈ [1,n] are
generated from the body of axiom rule form and (sa , ra ,oa ) < T
is new inferred triples to be added into knowledge graph.

To predict label for (sa , ra ,oa ), we first translate the grounding
form in (13) in propositional logical expression:

(s1, r1,o1) ∧ (s2, r2,o2) ∧ ... ∧ (sn , rn ,on ) ⇒ (sa , ra ,oa ) (14)
then we model groundings through t-norm based fuzzy logics[17].
It regards the truth value of a propositional logical expression as
a composition of constituent triples’ truth value, through specific
logical connectives (e.g. ∧ and ⇒). For example, the truth value
of a propositional logical expression (s1, r1,o1) ⇒ (s2, r2,o2) is
determined by the true value of two component triples (s1, r1,o1)
and (s2, r2,o2), via a composition defined by logical implication
⇒. We follow the definition of composition associated with logical
conjunction (∧), disconjunction (∨) and negation (¬) as [14]:

π (a ∧ b) = π (a) · π (b) (15)
π (a ∨ b) = π (a) + π (b) − π (a) · π (b) (16)
π (¬a) = 1 − π (a) (17)

π (a ⇒ b) = π (¬a ∨ b) (18)

in which a,b are logical expressions and π (x ) is the truth value of
x . Given these compositions, the truth value of any propositional
logical expression can be calculated recursively through Equation
(15)-(18). For example, applying to propositional logical expression
of grounding д : (s1, r1,o1) ∧ (s2, r2,o2) ⇒ (sa , ra ,oa ):

π (д) = 1−π (s1, r1,o1)π (s2, r2,o2)+π (s1, r1,o1)π (s2, r2,o2)π (sa , ra ,oa )

To predict the truth value π (sa , ra ,oa ) for triples (sa , ra ,oa ),
inferred by axiom a according to grounding дa , based on t-norm
fuzzy logics, π (sa , ra ,oa ) can be calculated according to π (д) and
π (s1, r1,o1), π (s2, r2,o2), ...,π (sn , rn ,on ) ∈ дa . In former example,

π (sa , ra ,oa ) =
π (д) − 1 + π (s1, r1,o1)π (s2, r2,o2)

π (s1, r1,o1)π (s2, r2,o2)

For the truth value of axiom a’s groundingд, we evaluate it as the
score of a generated by axiom induction, namely π (дa ) = sa . For
the truth value of triples existing in knowledge graph, we evaluate
them with their training labels, thus π (s, r ,o) = 1 for (s, r ,o) ∈ T ,
because existing triples are absolutely true. With these two types
of truth value assignment, we can easily get the following result
for triples (sa , ra ,oa ) inferred by any type of axioms a:

π (sa , ra ,oa ) = sa (19)
After axiom injection, a set of new triples Taxiom = {(sa , ra ,oa ) |

sa ∈ Esparse or oa ∈ Esparse } are inferred via quality axioms and
each new triple (sa , ra ,oa ) is labeled with lsro = sa . Thus the input
of embedding learning was updated, I = {((s, r ,o), lsro ) |(s, r ,o) ∈
T ∧ Taxiom }. Then the process goes back to embedding learning.

4 EXPERIMENT
During experiments, we want to explore following questions: 1)
whether axioms really help sparse entity embedding learning? To do
this, we evaluate the quality of embeddings on link prediction task
which is widely applied in previous knowledge graph embedding
works; 2) whether embeddings really help rule learning overcome
the huge search space and improve the quality of learned rules? To
do this, we evaluate the efficiency of axiom learning with learning
time and the quality with number and percentage of high quality
axioms the method generate; 3) how does the iterative manner
affect embedding learning and rule learning process? To this end,
we show the changes of link prediction results, rule qualities and the
number of triples injected along with different number of iterations.

4.1 Dataset
Four datasets are used in experiment, includingWN18-sparse,WN18RR-
sparse, FB15k-sparse, and FB15k-237-sparse. They are generated
fromWN18[3],WN18RR[7], FB15k[3] and FB15-237[34], four datasets
that are commonly used in previous knowledge graph embedding
work. WN18 and WN18RR are subsets of WordNet, a lexical knowl-
edge graph for English. FB15k and FB15k-237 are subsets of a large
collaborative knowledge base Freebase. The statistics of datasets
are listed in Table 3.

We generate the sparse version of these datasets via changing the
valid and test datasets which will be used for link prediction evalu-
ation. In link prediction experiments, we want to explore whether
axioms really contribute to sparse entity embeddings. Therefore,
we only keep triples in test and valid dataset which involve at least
one sparsity entity. In other words, for a test or valid triple (s, r ,o),
if either s or o is or both are sparse entity (Equation (12)), the triple
will be kept in sparse dataset, otherwise, it will be filtered. When
deciding sparse entity hyperparameter θ , intuitively a principle is
considered: the percentage of left triples in valid and test set should
not be larger than 80% or less than 20% of original valid and test
set for all datasets. Thus we choose θ = 0.995 and regard entities e



Table 3: Statistics of datasets.
Dataset #E #R #Train #Valid #Test

WN18-sparse 40,943 18 141,442 3624(72.48%) 3590(71.8%)
WN18RR-sparse 40943 11 86835 1609(53.03) 1661(52.9%)
FB15k-sparse 14,951 1,345 483,142 18544(37.08%) 22013(37.26%)

FB15k-237-sparse 14541 237 272115 10671(60.8%) 12454(60.85%)

with sparsity (e ) > 0.995 as sparse entity in this paper. Table 3 also
shows the percent of triples left.
4.2 Training Details
For embedding learning, the number of negative samples is set to 6
and the number of scalars on the diagonal of each relation matrix is
set to d

2 where d is embedding dimension. We initialize embeddings
with uniform distribution U(−0.1, 0.1).

For axiom induction, we set the minimum axiom probability
p = 0.5 and the including probability t = 0.95 for axiom pool
generation. Based on these settings, the number of related triples
selected for each relation is set as k = 6 according to Equation( 9).
Details of axiom pools generated for all datasets are shown in Table
4, where we can see that the number of possible axioms in FB15k
and FB15k-237 are much larger than WN18 and WN18RR because
the number of axioms is highly related to the diversity of relations.

Table 4: Axiom pools details.
ref. sym. tra. equ. inv. sub. sub.(Cha.)

WN18-sparse 0 3 1 2 19 2 72
WN18RR-sparse 0 3 1 1 3 1 22
FB15k-sparse 41 94 52 1872 2743 1872 59709

FB15k-237-sparse 5 30 27 197 192 197 5017

For axiom injection, considering that axioms with high scores are
more reliable and less possible to introduce noise, we set a threshold
θ for each dataset and regard axioms with scores saxiom > θ as
high quality axioms. We also set a maximum inferred triples m
for axioms in each dataset, if one axiom will infer a lot of triples
we ignore it because a huge number of triples inferred by one
axiom will change the data distribution significantly and make the
embedding training unstable.

During one iteration learning, we first train embedding learning
for 10 epochs, and then conduct axiom induction and injection once.
The maximum training iteration is set to 10 for WN18RR-sparse
and FB15k-237-sparse and 50 for WN18-sparse and FB15k-sparse.
We use Adam algorithm [19] during optimization with learning
rate lr = 0.001. We apply grid search for the best hyperparameters
based on the filterMRR on the validation dataset, with combinations
from embedding dimension d ∈ {100, 200} and l1 regularizer weigh
λ ∈ {10−4, 10−5, 10−6}.

The final parameters are d = 200, λ = 10−5,θ = 0.95,m =
20000 for WN18-sparse, d = 200, λ = 10−5,θ = 0.9,m = 10000
for WN18RR-sparse, d = 200, λ = 10−4,θ = 0.95,m = 100 are for
FB15k-sparse, and d = 200, λ = 10−5,θ = 0.9,m = 1000 are for
FB15k-237-sparse.
4.3 Embedding Evaluation
We evaluate the quality of embeddings on link prediction tasks. Link
prediction aims to predict the missing entity when given the other
entity and relation in a triple, including subject entity prediction
(?, r ,o) and object entity prediction (s, r , ?).

4.3.1 Evaluationmetrics. Given subject entity prediction task (?, r ,o)
with right answer s , we first fit subject entity position with each

entity e ∈ E and thus get a set of triples Tsub jectpredict ion =
{(e, r ,o) |e ∈ E}. Then we calculate the score for each triple in
Tsub jectpredict ion according to Equation (6) and rank their scores
in descending order. Thus the entity e in (e, r ,o) with a higher rank
is a more possible prediction. To evaluate how good the prediction
is, we use the rank of (s, r ,o) among all triples in Tsub jectpredict ion
as subject entity prediction evaluation result for (s, r ,o), namely
subject entity prediction rank ranks (?, r ,o). The object entity pre-
diction task is done in the same way and will get objection entity
rank ranko (s, r , ?). The final prediction rank rank (s, r ,o) for (s, r ,o)
is the average of subject and object prediction rank:

rank (s, r ,o) =
1
2 (ranks (?, r ,o) + ranko (s, r , ?))

Aggregating prediction rank for all test triples, we applied mean
reciprocal predicting rank (MRR) and the percentage of predicting
ranks within n (Hit@n) to evaluate the whole prediction result.
These two metrics are widely used in previous work [35][23]. Gen-
erally, a higher MRR or Hit@n indicates a better prediction result.

We also apply f ilter and raw setting. As mentioned in [41],
when fitting subject or object entity position with other entities,
we may generate triples existing in knowledge graph which are
known to be true. It is not wrong if these triples are ranked higher
than current test triple. With f ilter setting, we filter the generated
triples that exist in both train/valid/test dataset before ranking but
not current test triple. raw means the setting of NO filtering.
4.3.2 Baselines. For baselines, one method from translation-based
assumption TransE 3 and three methods based on linear map as-
sumption, DistMult, ComplEx, and ANALOGY 4 are considered.
4.3.3 Results and analysis. To show how axiom helps sparse entity
embeddings, we adopt two strategies: (1) Firstly, we evaluate how
axioms directly improve entity embedding quality and compare link
prediction results from our method, denoted as IterE in Table 5,
with other baselines directly. (2) Secondly, we evaluate how axioms
can help improve sparse entity link prediction utilizing its deductive
ability. Thus we compare prediction results with embeddings and
axioms, denoted as IterE+axioms in Table 5 with IterE and other
methods. In IterE+axioms, if the test triple (s, r ,o) are inferred by
axioms during axiom injection, which means (s, r ,o) ∈ Taxiom , we
regard it as correct and mark its prediction rank as 1.

The link prediction results are shown in Table 5. We analyze the
results as follows: Firstly, the link prediction results of IterE competi-
tive to ANALOGY, which means most of the triples injected into em-
bedding learning are not noise, indicating that learning axioms from
embeddings works well. Secondly, IterE outperforms baselines on
WN18RR-sparse and FB15k-237-sparse, while are slightly improved
on WN18-sparse and FB15k-sparse. These indicate that IterE helps

3the code for TransE is from https://github.com/thunlp/OpenKE. We train all dataset
with learning rate 0.01, margin 1.0 and dimension 100 for maximum 3500 iterations.
4The code for DistMult, ComplEx and ANALOGY is from
https://github.com/quark0/ANALOGY. We train them with the same parame-
ter setting as [23] for maximum 500 iterations. For WN18-sparse, the parameters are
dimension d = 200, regularizer weigh λ = 10−1 , negative weight n = 6 for DistMult
and d = 200, λ = 10−2, n = 6 for both ComplEx and ANALOGY. For WN18RR-sparse,
the parameters are d = 200, λ = 1−−1, n = 3 for DistMult, Complex and ANALOGY.
For FB15k-sparse, the parameters are d = 200, λ = 10−2, n = 6 for DistMult,
Complex and ANALOGY. For FB15k-237-sparse, the parameters are dimension
d = 100, λ = 0.1, n = 6 for ANALOGY and Complex and d = 200, λ = 10−1, n = 3
for DistMult.



Table 5: Link prediction results with MRR and Hit@n on WN18RR-sparse and FB15k-237-sparse. Underlined scores are the better ones
between ANALOGY and IterE(ANALOGY). Boldface scores are the best results among all methods.

WN18-sparse FB15k-sparse
MRR MRR Hit@1 Hit@3 Hit10 MRR MRR Hit@1 Hit@3 Hit10
(filter) (raw) (filter) (filter) (filter) (filter) (raw) (filter) (filter) (filter)

TransE[3] 41.8 33.5 10.2 71.1 84.7 39.8 25.5 25.8 48.6 64.5
DistMult[47] 73.8 55.8 59.3 87.5 93.1 60.0 32.4 61.8 65.1 75.9
ComplEx[35] 91.1 67.7 89.0 93.3 94.4 61.6 32.7 54.0 65.7 76.1

ANALOGY[23] 91.3 67.5 89.0 93.4 94.4 62.0 33.1 54.3 66.1 76.3
IterE(ANALOGY) 90.1 67.5 87.0 93.1 94.8 61.3 35.9 52.9 66.2 76.7
IterE(ANALOGY) + axioms 91.3 78.9 89.1 93.5 94.8 62.8 38.8 55.1 67.3 77.1

WN18RR-sparse FB15k-237-sparse
MRR MRR Hit@1 Hit@3 Hit10 MRR MRR Hit@1 Hit@3 Hit10
(filter) (raw) (filter) (filter) (filter) (filter) (raw) (filter) (filter) (filter)

TransE[3] 14.6 12.4 3.4 24.7 28.8 23.8 15.6 16.4 26.1 38.5
DistMult[47] 25.5 20.8 23.8 26.0 22.5 20.4 12.9 12.8 22.6 36.2
ComplEx[35] 25.9 21.4 24.6 26.2 28.6 19.7 13.3 12.0 21.7 35.4

ANALOGY[23] 19.8 13.3 24.6 27.5 28.7 19.8 13.9 12.3 21.4 34.9
IterE(ANALOGY) 27.2 22.7 25.0 28.1 31.4 20.7 14.0 13.1 22.8 36.2
IterE(ANALOGY) + axioms 27.4 25.7 25.4 28.1 31.4 24.7 18.6 17.9 26.2 39.2

Table 6: Rule evaluation results.

WN18-sparse WN18RR-sparse FB15k-sparse FB15k-237-sparse
time HQr % time HQr % time HQr % time HQr %

AMIE+ 4.98s 16 11.4% 3s 2 5.71% 428s 1820 4.4% 66s 470 1.9%
IterE 1.63s 20 20.2% 0.75s 6 19.3% 26.49s 11375 17.6% 4.72s 653 11.8%

sparse entities muchmore inWN18RR-sparse and FB15k-237-sparse
than in WN18RR-sparse and FB15k-sparse. This is quite reasonable
in our opinion, because among these four datasets, WN18RR-sparse
and FB15k-237-sparse are more challenging and more sparse. They
are created from WN18-sparse and FB15k-sparse via removing one
relation of all inverse relation pair in the dataset and also their
related triples because inverse relation pair is a significant pattern
in these two datasets as first noted in [34]. Thirdly, the results of
IterE+axioms are improved compared with IterE in all datasets, es-
pecially on the most complex and sparse dataset FB15k-237-sparse.
It indicates that the deductive capability of axioms can help the
prediction of sparse entities further.

From the evaluation of link prediction, we can conclude that: (1)
by injecting new triples for sparse entities, axioms help improve
the quality of sparse entity embeddings and are more helpful in
sparse KGs. (2) Combining axioms and embeddings together to
predict missing links works better than using embeddings only.
Both the deductive capability of axioms and the inductive capability
of embeddings contribute to prediction and complement each other.
4.4 Rule Evaluation
We evaluate the learned rules/axioms from two perspectives: effi-
ciency and quality. We compare our method with AMIE+[9]5 which
is an improved rule mining system of widely used AMIE[10].
4.4.1 Evaluation metrics. The efficiency of rule learning is eval-
uated by learning time. The quality of rule learning is evaluated
with the number of high quality rule (HQr) and their percentage.
The quality of rules are evaluated by head coverage(HC) which
is commonly used in pervious work, such as [10] and [29]. Head

5we run AMIE+ code from https://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/amie/

coverage for rule rul is defined as follows:
HC (rul ) =

#(e, e ′) : support (rul ) ∧ head (rul ) (e, e ′)
#(e, e ′) : head (rul ) (e, e ′)

in which head (rul ) (e, e ′) = {(e, r , e ′) ∈ T } if the head atom of rul
is (X, r ,Y). And support (rul ) is the supports for rul . We regard high
quality rules as the rules with HC > 0.7 during test.
4.4.2 Results and analysis. Rule evaluation results are shown in
Table 6. According to the time used to generate rules among all
datasets, we can see that IterE learns rules more efficiently. For
example, with FB15k-sparse and FB15k-237-sparse datasets, IterE
costs 10 times less than AMIE+. This shows our pruning strategy
works well. Among 4.72 seconds IterE cost for FB15k-237-sparse
dataset, there is 4.55 seconds used for axiom pool generation and
0.17 seconds for axiom score calculation, namely axiom score cal-
culation only cost 3.6% of the time. This means calculating axiom
scores via embeddings is super efficient. We didn’t include the time
of embedding learning during this evaluation, as embedding learn-
ing is not devised mainly for rule learning, but for link prediction.
The number of high quality rules shows that IterE generates more
high quality rules than AMIE+ for each dataset and also achieves a
higher percentage. This indicates that our axiom pool generation
can filter meaningless axioms(rules) and achieve a good balance
between small search space and coverage of highly possible axioms.

Further more, Figure 4 shows the changes of high quality ax-
ioms coverage and axiom percentage with different axiom score
thresholds from IterE. For example, in 4(c), with axiom threshold
0.9, which means we select axioms with sa > 0.9 from IterE for
axiom injection, there are 23.4% axioms selected among all axioms
and 46.4% high quality axioms included. And in 4(d), with axiom
threshold 0.9, there are 53.9% axioms selected and 76.5% high qual-
ity axioms included. It illustrates that axiom scores calculated from
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Figure 4: The coverage of high quality axioms (blue) and the axiom
percentage (orange) with different axiom score thresholds. 4(a) is
fromWN18-sparse. 4(b) is fromWN18RR-sparse. 4(c) is fromFB15k-
sparse. 4(d) is from FB15k-237-sparse.

embeddings are reliable because it is consistent with rule evaluation
results. The results in 4(a) and 4(b) for WN18-sparse and WN18RR-
sparse are not obvious because a few relations are contained in
these two datasets and the number of learned rules is limited.

From rule evaluation results, we can conclude that (1) embed-
dings together with axiom pool generation help rule learning over-
come large search space problem and improve rule learning effi-
ciency, and (2) they also improve rule learning qualities and rules’
reliable scores generated based on calculation with embeddings.

4.5 Iterative learning
To explore how iterative training improves embedding and rule
learning during training, we show link prediction results on FB15k-
237-sparse and number of injected triples at different iterations in
Figure 5.
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Figure 5: 5(a) shows link prediction results, MRR and Hit@10, in
different iterations. 5(b) shows the number of triples injected into
embedding learning in different iterations.

Figure 5 shows that the prediction results including Hit@10 and
MRR become better as the training iteration increases and gener-
ally the number of injected triples increases during training and

finally gets stable. The number of injected triples for subOP and
equivalentOP in iteration 4 is less than iteration 3 which means
axioms with high scores learned from previous iteration might get
a lower score in the next iteration. This indicates that embedding
learning effects rule learning. Thus from Figure 5, we can conclude
that: (1) Iterative learning benefits embedding learning as the qual-
ity of embeddings gets better during training. (2) Iteratively learning
benefits axiom learning because more axioms are learned and more
triples are injected during training. (3) Axioms and embeddings
influence and constrain each other during training.
4.6 Case study
In Table 7, we give a case study with 3 test triple examples which are
inferred by axioms during training. Using the third one as an exam-
ple, the test triple is (Jenny_McCarthy, /type_o f _union, Marriage).
Jenny_McCarthy is a person with only a few triples in KG and is a
sparse entity with sparsity 0.997. Marriage is a type of union for
people which has many links with individual person and its sparsity
is 0.607. The subject prediction rank (?, /type_of_union, Marriage)
in ANALOGY is 4199 and the object prediction (Jenny_McCarthy,
/type_o f _union, ?) is 2, from which we can see that the prediction
for a sparse entity is muchworse than a frequent entity. In IterE, this
triple is predicted by rule (X, /type_o f _union, Z)← (X, spouse , Y),
(Y, /type_o f _union, Z) because there are (Jenny_McCarthy, spouse ,
Jim_Carrey) and (Jim_Carrey, /type_o f _union, Marriage) in KG
which can compose a grounding for previous rules. Thus during
training, the test triple is inferred by IterE and injected into embed-
ding learning. Thus the subject prediction is improved from 4199 to
33 compared with ANALOGY and the object prediction keeps the
same. When we predict with both embeddings and axioms (IterE
+ axioms), the subject prediction is improved from 33 to 1 and the
object prediction from 2 to 1 compared with IterE. Other two cases
in Table 7 perform similar to the third one.

These examples show that: (1) adding triples that can be inferred
by axioms back into training improves the prediction results of
related sparse entities without hurting the results for non-sparse
entities. (2) the deductive ability of axioms helps ensure truth value
of triples with sparse entities, which, in our opinion, overcomes
uncertainties and noises that effect embedding prediction.

5 RELATEDWORK
In this paper, we focus on iteratively learning embeddings and rules
from knowledge graphs. Thus the related work includes two parts:
(1) embedding learning, (2) rule learning.

5.1 Embedding Learning
Knowledge graph embedding learns latent representations for enti-
ties and relations in continuous vector space. Normally entities are
represented as vectors [3][27][35] and relations are represented as
vectors [3][41][27] or matrices [47][28][23]. These embeddings are
assumed to preserve the semantics in a knowledge graph such as
the similarity between entities[30], the truth of triples[3]. For most
embedding methods, the input are triples existing in knowledge
graph and embeddings are trained based on different vector space
assumptions, such as translation-based assumption in [3] [41] [22]
[18], and linear map assumption in [28] [47] [35] [23]. Some meth-
ods do not follow specific vector space assumption for embeddings,
and special neural networks are applied to train embeddings and



Table 7: Examples from FB15k-237-sparse about the link prediction changes of test triples involving sparse entity. Following details are
shown: the sparsity of subject and object entity in test triple, number within the square bracket beside the entity; the axiom that infers the
test triple; the change of link prediction rank from ANALOGY to IterE; the change of link prediction rank from IterE to IterE+axiom.

triple (Groundhog_Day[0.996]), /f ilm/currency , United_States_Dollar[0.615])
predicted by axiom (X, /f ilm/currency , Z)← (X, f ilm_r elease_r eдion, Y), (Y, /location/currency , Z)
rank change(ANALOGY→ IterE) subject prediction rank: 1409→ 356 (+1053) object prediction rank: 1→ 1(+0)
rank change(IterE→ IterE+axiom) subject prediction rank: 356→ 1 (+355) object prediction rank: 1→ 1(+0)
triple (USA[0.0]), /second_level_divisions , Champaign_County[0.999])
predicted by axiom (X, /second_level_divisions , Z)← (Y, /bibs_location, X), (Z, /county_seat , Y)
rank change(ANALOGY→ IterE) subject prediction rank: 1→ 1 (+0) object prediction rank: 416→ 214(+202)
rank change(IterE→ IterE+axiom) subject prediction rank: 1→ 1 (+0) object prediction rank: 214→ 1(+213)
triple (Jenny_McCarthy[0.997]), /type_of _union, Marriage[0.607])
predicted by axiom (X, /type_of _union, Z)← (X, spouse , Y), (Y, /type_of _union, Z)
rank change(ANALOGY→ IterE) subject prediction rank: 4199→ 33 (+4166) object prediction rank: 2→ 2(+0)
rank change(IterE→ IterE+axiom) subject prediction rank: 33→ 1 (+32) object prediction rank: 2→ 1(+1)

assign reasonable scores for different triples. For example, neural
tensor networks in [32], convolution neural network in [7] and
shared memory neural network in [31]. Linear map assumption is
adopted for embedding learning in this paper because of its simplic-
ity and good property for rule learning, while other assumptions
or neural network models don’t have.

Besides triples in KGs, some embedding methods also utilize
other information during learning, for examples, entity descriptions
in [40][43][39][42], entity types in [12][45], entity images in [44],
and paths in [11][21][25], which can be regarded as a kind of rules.

Rules, as useful information for reasoning, are also considered to
assist embedding learning. Among these methods different types of
rules are considered, for examples, [37] introduces one type of logi-
cal rule and three physical rules, [14] utilizes horn soft rules learned
from [9], [24] incorporates equivalence and inversion Axioms, and
[13] considers two types of logical rules. To incorporate rules into
embedding learning, some methods try to improve the embedding
method’s capability of modeling rules by various ways, such as
encoding relations as convex regions in [15] and non-negativity
constraints on entity representations in [8]. Some methods regard
rules as guidance for embedding learning. For examples, [37] forms
the whole learning process as a integer linear programming prob-
lem with conditions defined based on rules. [14] infers unlabeled
triples according to input rules. [21] adds constrains for relation
embeddings participating in path rules. [6] maps entity-tuple em-
bedding into an approximately Boolean space and encourages a
partial ordering over relation embedding based on implication rules.
[8] adds approximate entailment constraints on relation representa-
tions. Somemethods jointly embed rules and triples during learning,
such as [13] which first learns rules based on embeddings from [3]
and then retrains the embeddings incorporating with rules.

Aforementioned embedding methods with rules normally make
rule learning detached from embedding learning and unrelated with
embeddings. While our goal in this paper is not only an embedding
learning system, but also a rule learning system in which rules are
learned from embeddings and help improve embedding quality.

5.2 Rule learning
Rule is an important component for reasoning and has been studied
in many previous works. Among rule learning works, different
kinds of rules are adopted, for example, Horn rules in [9], closed

path rules in [20] and general rules with both variables and con-
stants and atoms occurring either positively or negatively in [16],
frequent predicate cycles in [38], semantic association rules in [1].
These methods all consider the types of rules to learn from their
structures, while in this paper, we consider rules based on their
semantics because we think semantics are important for the devel-
opment of knowledge graphs. Thus we adopt OWL2 object property
expression axioms to form the types of rules to learn.

To calculate the confidence of rules, standard confidence or PCA
confidence are usually used [9][16] which are based on searching
for supports of rules in the whole knowledge graph. To reduce the
search space, many rule learning systems have a pruning strategy.
Apart from graph search, there are also some works trying to learn
both structures and scores of rules based on deep neural models
[48] or reinforcement learning [46][5].

Embeddings are also used to help rule learning and are used for
different purposes. Some utilize embeddings to guide and prune the
search for candidate rules[29]. Some make embeddings to complete
the knowledge graph during rule learning[16]. Some use embed-
dings to assign scores for rules[47][13]. They all rely on calculations
among embeddings and the way of calculations depends on specific
embedding methods.

Different from these methods which mainly proposed to learning
rules, we devote to learn embeddings and rules at the same time
and make their advantages contribute to each other’s learning.

6 CONCLUSION AND FUTUREWORK
In this paper, we discuss the advantages and disadvantages of two
common knowledge graph reasoning methods, embedding-based
method and rule-based method, and propose IterE that iteratively
learns embeddings and rules in one model and enjoys the mutual
benefit between them. In the future, we will continuously inves-
tigate combining inductive and deductive reasoning together and
develop models that could unify different kinds of reasoning.
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