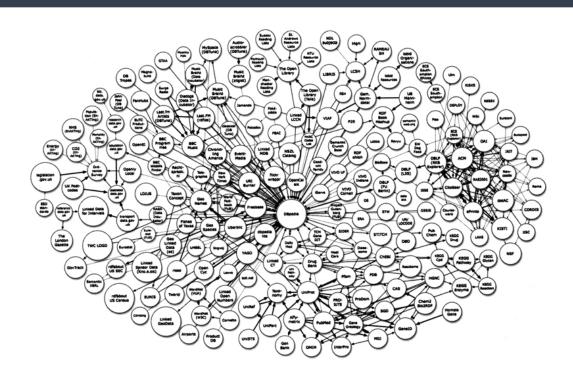
Knowledge Graph Embedding with Diversity of Structures

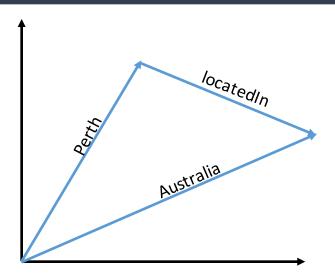

Wen Zhang
Zhejiang University, China
April 5, 2017

What is knowledge graph?

What is Knowledge graph embedding?

What is diversity of structures?

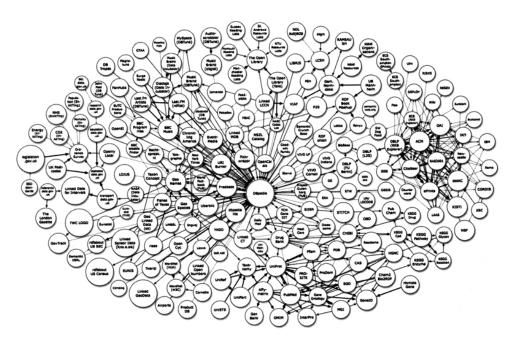
What is knowledge graph?


Triple example:

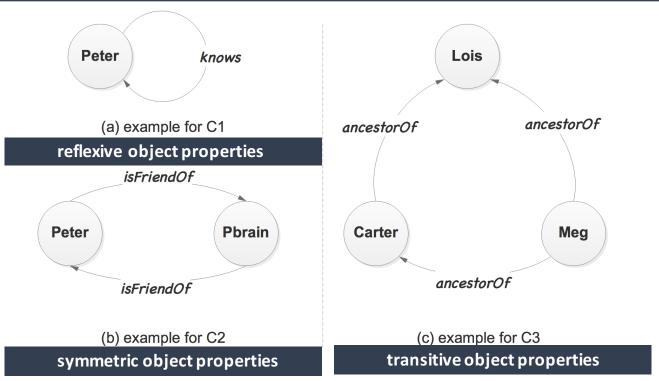
<Perth, locatedIn, Australia>

Famous large KGs:

WordNet, Freebase, YAGO, Nell,


What is knowledge graph embedding?

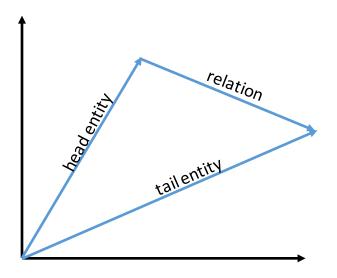
Translate-based methods


for true triple <e $_1$, r , e $_2>$: $\boldsymbol{e}_1+\boldsymbol{r}=\boldsymbol{e}_2$ TransE, TransH, TransR, TransD

What is diversity of structures?

"One-relation-circle"

What is diversity of structures? ---- ORC structures

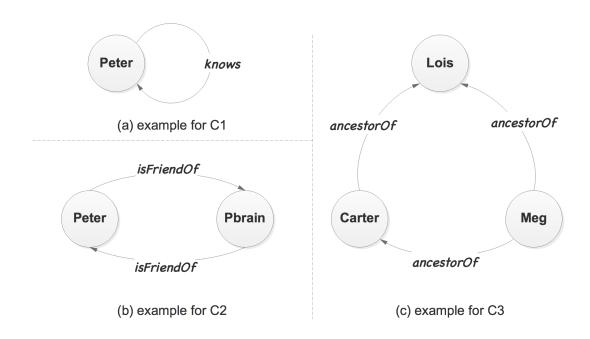


Diversity of structures ---- Is ORC structures common in KG?

	C1	C2	C3	ORC
WN18	9(0.00%)	30048(19.84%)	2237(1.48%)	32294(21.68%)
FB15k	2250(0.38%)	52376(8.84%)	59620(10.07)	114241(19.29%)

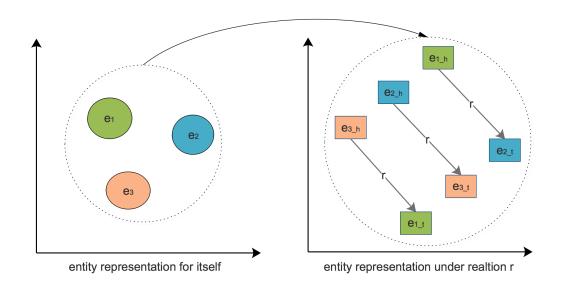
Table: the number and percent of entities which construct at least one of C1, C2 or C3

Why previous translate-based methods can't encode ORC structures?

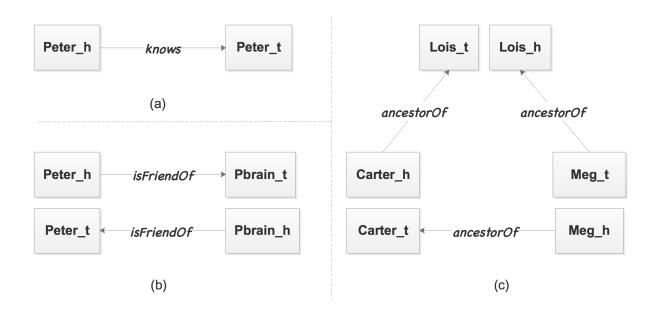

for true triple
$$\langle e_1, r, e_2 \rangle$$
: $e_1 + r = e_2$

C1:
$$\langle e_1, r, e_1 \rangle$$

 $e_1 + r = e_1 \Rightarrow r = 0$


C2:
$$\langle e_1, r, e_2 \rangle$$
, $\langle e_2, r, e_1 \rangle$
 $e_1 + r = e_2, e_2 + r = e_1 \Rightarrow r = 0$

C3:
$$\langle e_1, r, e_2 \rangle$$
, $\langle e_2, r, e_3 \rangle$, $\langle e_1, r, e_3 \rangle$
 $e_1 + r = e_1$, $e_2 + r = e_3$, $e_1 + r = e_3$
 $= \rangle r = 0$


Why previous translate-based methods can't encode ORC structures?

Key idea to decompose ORC structures

Key idea to decompose ORC structures

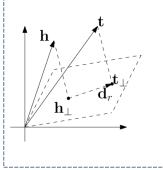
Our method

Score function for triple $\langle e_1, r, e_2 \rangle$:

$$f_r(e_1, e_2) = ||e_{1h}| + r - e_{2t}||_{L1/L2}$$

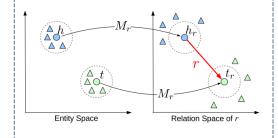
Loss function:

$$L = \sum_{(e_1, r, e_2) \in \Delta} \sum_{(e'_1, r', e'_2) \in \Delta'} [f_r(e_1, e_2) + \Upsilon - f_r(e'_1, e'_2)]_+$$


where:

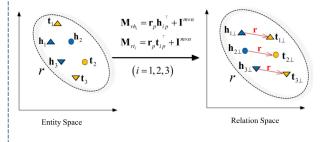
$$[x]_+ = \max(0, x)$$

Apply our method to TransH, TransR and TransD


TransH(dORC)

$$e_{1h} = e_1 - w_{rh}^{\mathsf{T}} e_1 \cdot w_{rh}$$

 $e_{2t} = e_2 - w_{rt}^{\mathsf{T}} e_2 \cdot w_{rt}$


TransR(dORC)

$$\begin{array}{c} e_{1h} = M_{rh} \cdot e_1 \\ e_{2t} = M_{rt} \cdot e_2 \end{array}$$

TransD(dORC)

$$e_{1h} = M_{rh} \cdot e_1, \qquad e_{2t} = M_{rt} \cdot e_2 M_{rh} = r_h e_{1p}^{\mathsf{T}} + I^{d \times d}, \quad M_{rt} = r_t e_{2p}^{\mathsf{T}} + I^{d \times d}$$

Experiment results

Link prediction:

<e1, r, ?> or <?, r , e2>

mean rank & hit@10

Table 3: Results on WN18 for Link Prediction						
Method	Mean Rank		$\mathrm{Hit@}10(\%)$			
Method	Raw	Filter	Raw	Filter	1	
Unstructured [1]	315	304	35.3	38.2	1	
RESCAL [13]	1180	1163	37.2	52.8		
SE [2]	1011	985	68.5	80.5		
SME(linear) [1]	545	533	65.1	74.1		
SME(Bilinear) [1]	526	509	54.7	61.3		
LFM [17]	469	456	71.4	81.6	l	
TransE [6]	263	251	75.4	89.2		
TransH(unif) [29]	318	303	75.4	86.7		
TransH(bern) [29]	401	388	73.0	82.3		
TransR(bern) [26]	238	225	79.8	92.0		
TransR(unif) [26]	232	219	78.3	91.7	l	
CTransR(unif) [26]	243	230	78.9	92.3		
CTransR(bern) [26]	231	218	79.4	92.3		
TransD(unif) [9]	242	229	79.2	92.5	l	
TransD(bern) [9]	224	212	79.6	92.2		
TransH(dORC)(unif)	<u>298</u>	286	79.4	93.3	1	
TransH(dORC)(bern)	<u>278</u>	271	80.2	<u>93.0</u>	l	
TransR(dORC)(unif)	224	212	<u>79.3</u>	92.1		
TransR(dORC)(bern)	<u>231</u>	219	80.9	92.5		
TransD(dORC)(bern)	<u>205</u>	192	<u>79.7</u>	92.4		

Knowledge Graph Embedding with Diversity of Structures

Thanks